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Abstract 

Deep learning has revolutionized disease detection and prediction by 

enabling highly accurate, automated analysis of complex medical data. Its 

ability to uncover hidden patterns allows for early and reliable diagnosis, 

supporting personalized treatment and improving patient outcomes. This 

study examines using deep learning models, which are convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and multi-layer 

perceptrons (MLPs), to predict chronic kidney disease (CKD) in the early stages. 

Since chronic kidney disease (CKD) can progress without obvious clinical 

symptoms, timely detection of early-stage CKD is crucial for effective 

treatment. A dataset from Kaggle comprising various clinical and demographic 

features was preprocessed for normalization and encoding, with missing 

values treated across both training and testing sets. The CNN model resulted 



 

 102

in 99% accuracy, which further supports it being the best feature extractor. 

RNN performed with 80% accuracy in sequential data, while the MLP model 

gave an accuracy of 99%, which indicated that it could handle structured 

clinical data quite effectively. This study suggests that deep learning 

methodologies like CNNs have potential capabilities in the accurate prediction 

of CKD, which proves to be our most reliable model. Nevertheless, both RNN 

and MLP showed good results as well, which may indicate the robustness of 

models in medical diagnostics. This evidence then points toward deep 

learning as a solution for better screening of patients with early CKD, which 

could result in improved patient-centered care that is non-invasive and cost-

effective. These advancements could transform CKD forecasting, enabling 

more tailored and preventive health interventions. 

Keywords: Chronic Kidney Disease (CKD), Deep Learning, Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Multi-Layer 

Perceptrons (MLPs), CKD Prediction 

1. Introduction 

Chronic kidney disease (CKD) is a major global public health challenge with an 

increasing prevalence worldwide due to aging populations, rapidly growing 

rates of diabetes and hypertension together with changes in lifestyle [1]. CKD 

is progressive and can progress to a dangerous health condition if untreated. 

This disease evolves through different stages; from light damage to ending-

stage renal diseases (ESRD), where kidneys do not work enough and 

management with kidney transplants or dialysis to stay alive [2]. CKD affects 

approximately 10% of the global population, and its prevalence is predicted to 

increase owing to an aging population worldwide as well as catastrophic 

growth in risk factors such as obesity and diabetes [3]. CKD has a significant 

negative effect on the quality of life, given the high morbidity and mortality 
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rates reported among these patients; reduced longevity is expected but also 

high costs to their healthcare [4]. Accordingly, early and correct diagnosis of 

CKD is essential to be able to treat the disease effectively and avoid 

progressing to higher stages. 

Detecting CKD early is important because it leads to timely intervention, 

which can effectively change patient outcomes and retard disease trajectory. 

Strategies to prevent or slow the progression of CKD such as lifestyle 

intervention, control of blood pressure, and some medicines can be given 

before passing for more expensive treatments [5]. However, the problem is 

that ICV tends to progress silently with little in the way of symptoms during its 

early stages rendering detection painstaking. Early prediction of CKD can 

greatly improve patient care by allowing early treatment and management. 

Classic diagnostic methods for CKD are frequently based on laboratory 

markers of kidney function, including serum creatinine and blood urea 

nitrogen levels [6]. Combined with a clinical evaluation to assess symptoms 

and risk factors. While these approaches are highly effective, they can be 

invasive, time-consuming, and expensive.  

For example, blood tests that are done routinely require laboratory 

processing and cannot always effectively detect early-stage CKD [7]. The 

limited nature of traditional diagnostic processes, although indicative and 

invasive may not be the best predictors. Recent technological advancements 

in the field have enabled build of predictive models that could analyze patient 

data and help predict patients who are likely to end up getting CKD much 

before they start developing symptoms [8]. By allowing proactive strategies 

and customized treatments, such tools have the power to change how we 

manage CKD. In the long term, this modification to early prediction and 

prevention can decrease health expenditures while enhancing patient quality 
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of life [9]. Deep learning in medical diagnosis has changed the landscape of 

complex data analysis, providing breakthroughs over recent years. Deep 

learning models such as Convolutional Neural Networks (CNNs), Recurrent 

Neural Networks (RNNs), and Multilayer Perceptrons have been shown to 

perform remarkable performance in many medical applications by automating 

feature extraction processes along with the flow of patient data [10]. 

Convolutional Neural Networks (CNNs) are especially good at 

dealing with structured data and images, having applications in e.g., medical 

image analysis such as X-rays and MRIs, to learn about the local patterns 

through convolution layers that capture spatial hierarchies [11]. Their capacity 

to recognize subtle patterns and inconsistencies makes them perfect for 

diagnosing diseases utilizing complex datasets such as chronic kidney disease 

(CKD) [12]. Recurrent Neural Networks (RNNs), and more specifically Long 

Short-Term Memory (LSTM) networks, are specialized in processing sequential 

data which can further be useful for time-series data analysis of patient 

monitoring because they have been created to learn from temporal 

dependencies or changes through detections on patients over the span [13, 

14]. Conversely, earlier and simpler approaches such as Multi-layer 

Perceptrons (MLPs) which are point densely linked layers can achieve the task 

of classification provided an appropriate feature engineering is done, hence 

making them valuable in working with structured tabular data equally to 

patient records or clinical parameters [15]. 

The use of deep learning models for the prediction of CKD can greatly 

improve prediction performance without needing manual feature extraction. 

These models are able to tackle significant big-data-related challenges and 

discover hidden associations possibly not easily detectable using standard 

statistical analysis, nurture the creation of new early detection strategies, as 
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well as reveal patient-stratification directions [16]. Healthcare remains a novel 

domain for the deployment of deep learning development techniques whose 

continued evolution and integration within our healthcare systems, in varied 

forms shall escort in significant patient outcomes improvements over time. 

Chronic kidney disease (CKD) is a massive global health burden, followed by 

the progressive reduction of renal function which can eventually result in 

death unless recognized and managed promptly.  

The conventional methods to diagnose chronic kidney disease (CKD) 

such as laboratory tests and clinical evaluations, are invasive as well expensive 

which also collapse when trying to detect CKD at its early stages. The need for 

more sensitive, non-invasive, and specific predictive tools is highlighted by 

this effort. Deep learning approaches, such as Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), and Multilayer Perceptrons (MLPs), 

can improve the predictive ability of CKD by detecting subtle patterns locked 

in medical complex data upon compared with classical methods. The objective 

of this study is to fill the gap for early CKD detection with the assessment of 

deep learning models on predicting CKD given earlier treatment and 

management that may prolong or even rescue patient lives. 

 The main contributions of this research study include: 

 To Evaluate the performance of CNNs, RNNs, and MLPs for CKD prediction to 

see which model gives the most accurate results. 

 To Identify the most important features in data influencing CKD prediction, to 

improve model interpretability and diagnosis. 

 To Develop and support an integrated forecasting model across CNN (with 

the incorporation of RNNs, and MLP) to increase the overall accuracy rate for 

CKD. 
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The rest of the paper is structured as follows: Section 2 illuminates previously 

conducted research in the domain of CKD prediction mechanisms, and makes 

mention of how deep learning methods are applied in medical diagnostics; 

while proceeding Section 3 explains the characteristics of the dataset such 

features, preprocessing steps undertaken for feature extraction process 

alongside explanation regarding reasons behind choosing it. This also 

provides the overview of methodology i.e. A Convolutional Neural Networks, B 

Recurrent Neural Networks, and C Multi-Layer Perceptron architecture and 

implementation for CKD Prediction. Section 4 presents the experimental 

results which take a comparison analysis of various models and describes our 

evaluation of effectiveness using different methods. Results are discussed in 

Section 5 with implications for clinical practice and future research 

recommendations. Finally, it gives the key findings and major contributions 

followed by suggestions for future work in CKD prediction. 

2. Related Work 

This study reviews research on machine learning applications for CKD 

prediction, focusing mainly on the literature review part. It summarizes 

readings across many of the algorithms from decision trees, and support 

vector machines to ensemble methods and deep learning techniques. The 

timely identification of machine learning gaps and challenges provides the 

groundwork for further investigation into how machine learning can 

contribute to CKD diagnosis, treatment, and prevention focusing at a more 

precise, objective-specific level that might allow potential advances in early 

detection with less invasive means. 

Chronic Kidney Disease (CKD) represents a global public health 

problem because of the complexity of its occurrence throughout life and the 

prompt diagnosis demand that makes mandatory new biomarkers developed. 
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Furthermore, conventional diagnostic tools like lab exams and clinical 

evaluations are typically invasive [17, 18]. Over the past years, the prediction 

and management of CKD became more effective by using machine learning 

(ML) techniques because these methods were applied to big raw datasets with 

several inter-features. 

Machine learning algorithms can be defined as a group of models that 

are capable of learning from data in order to make predictions or decisions. 

Our review shows that decision trees, SVMs, and ensemble methods have 

been highlighted as promising approaches in CKD prediction [19]. The 

simplest solution approach for developing predictive models of CKD is the 

decision tree, which has been used to classify patients with respect to their 

clinical features [20]. Decision trees are kind of immune to overfitting, but only 

until you reach high dimensions. Support Vector Machines (SVMs) are a well-

known robust method for pinpointing the best possible hyperplanes that 

distinguish two classes in feature space [21]. Previous CKD classification tasks 

using SVMs have shown good performance in discriminating between patients 

with and without CKD [22]. Nonetheless, SVMs are computationally expensive 

and hyperparameter tuning must be done very carefully. 

Ensemble methods like Random Forest & Gradient Boosting Machines 

combine many base models to give better predictive performance [23]. 

Random forests build multiple decision trees to enhance generalizability and 

reduce overfitting [24]. By iteratively improving models to correct errors made 

by previous iterations, Gradient Boosting Machines have extraordinarily high 

prediction performance [25]. Such methods are known to perform well in 

prediction tasks where features interact with each other, which is particularly 

relevant in CKD. 
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Chronic kidney disease (CKD) is a major global public health problem in 

which there is a gradual loss of kidney function eventually progressing to end-

stage renal disease (ESRD). CKD is a global health problem and represents 

over 10% of the total world population [26]. While early-stage CKD is often 

asymptomatic and not easily detected by any mainstream procedures, it 

typically advances in five stages. The key to effective management and better 

patient prognosis lies in early detection [27]. The current diagnostic standards, 

serum creatinine, and blood urea nitrogen (BUN) are often used but have 

limitations. These tests are non-invasive, expensive, and may fail to detect CKD 

in its early stages [28]. Therefore, it is desperately needed to develop more 

sensitive and non-invasive instruments for the early diagnosis of CKD, that 

would improve patient care while reducing healthcare costs. 

Recent progress in machine learning and deep learning promises to 

help. Some of the traditional ML techniques for CKD prediction are decision 

trees, random forests, and support vector machines (SVMs) [29]. However, 

feature engineering may be extensive and not encompass all of the intricate 

patterns in high-dimensional medical data [30]. Deep learning, is a more 

recent development that causes improvement over the previous one by 

automating processes of feature extraction and being trained on large data 

sets with fewer manual intervention [31, 32]. 

Convolutional Neural Networks (CNNs) have been the most successful 

in medical image analysis. CNNs are great at learning hierarchical image 

features, and should, therefore work well for detecting abnormalities in kidney 

scans that can help diagnose CKD [33]. CNNs have been proven to 

automatically extract features from image data and the use of CNNs on 

medical imaging has demonstrated increased accuracy in disease detection 

compared with traditional methods as well [34]. RNNs, particularly Long 
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Short-Term Memory (LSTM) networks, were created to process sequential data 

and have the advantage of capturing temporal dependencies that could be 

helpful in trend analysis with patient data over time [35].  

This study uses Recurrent Neural Networks (RNNs), Convolutional 

Neural Networks (CNNs), and Multi-Layer Perceptrons (MLPs) models for the 

prediction of chronic kidney disease (CKD). Given the complicated nature of 

CKD, RNNs have been shown to outperform other methods like Random 

Forest (RF) models for incorporating temporal dependencies and capturing 

long-range correlations in historical data as well. Convolutional Neural 

Networks (CNNs) are meant to be used specifically for image analysis, so this 

technique harnesses CNN architecture by shaping our medical imaging data 

for identifying patterns listed in the study. This type of MLP is used to learn 

non-linear relationships in structured clinical data, and these architectures 

have shown potential for detecting patterns useful CKD prediction can be 

achieved with proper preprocessing and feature selection. Appealing 

performance in CKD prediction could hence be potentially obtained by 

harnessing the unique capabilities of each model, as the complimentary 

nature would lead to a synergistic improvement when combined thematically 

using RNNs (mainly for handling temporal context over time), CNNs 

(subsequently capturing spatial relationships learned from coverage features) 

and MLPs. With advances in computational capability and increasing data 

availability, honing these integrated models and overcoming the challenge of 

data quality will be key to improving early detection with CKD care, leading to 

improved patient outcomes while decreasing burdens on health systems 

worldwide. 

This literature review reveals major breakthroughs in machine learning 

for the prediction of chronic kidney disease (CKD), showing that a variety of 



 

 110

models have proven their efficacy in elevating diagnostic accuracy. 

Nevertheless, there are still many gaps left especially in the area of combining 

multiple deep learning methods for the prediction of CKD together to take 

advantage of each strength they possess. Traditional methods often do not 

give full play to the complexity of CKD due to feature extraction and model 

adaptation shortcomings. 

In this paper, we fill these gaps in the literature by universally 

combining Recurrent Neural Networks (RNNs), Convolutional Neural Networks 

(CNNs), and Multi-Layer Perceptrons (MLPs). Through the utilization of RNNs 

specifically Long Short-Term Memory (LSTM) networks which are able to 

capture these long-term dependencies in patient-level historical data both 

more efficiently and with greater accuracy for chronic conditions. We use 

CNNs to parse medical imagery data identifying refined patterns related to 

CKD and MLP's model complex relationships found in structured clinical data, 

resulting in improving general predictive performance. 

This model integration not only leverages the benefits of every single 

model but also provides a unified analysis across patient data that helps to 

overcome limitations from previous studies. The development of the novel 

model in our study, aimed to not only increase CKD detection but also 

improve diagnostic accuracy and reliability over a wide range of clinical 

settings, offers an innovative approach for both early diagnosis through 

prediction capability as well as active management. This unique perspective 

on combinations of different deep models can be helpful to close the current 

gap in terms of integrated modeling and suggests new paths for more precise 

predictive tools inside CKD. 
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3. Material and Methods 

This section explains the dataset, proposed architecture, preprocessing steps, 

and three different DL techniques implemented to find CKD Prediction and 

performance. This research paper explained the use of DL Models for kidney 

disease prediction using deep learning models. 

3.1 Proposed Architecture  

The proposed architecture for chronic kidney disease (CKD) prediction, where 

multiple deep-learning models are integrated each of which is designed to be 

best suited for utilizing specific characteristics in the clinical dataset towards 

improved predictive accuracy. It uses Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks, and Multi-Layer Perceptrons, with each model 

employed for the best fit of medical data. CNNs are a class of network used 

primarily with image data but adapted for tabular data here, to learn complex 

hierarchical features in CKD parameters and detect possible non-linear 

relationships automatically. The convolution layers are one-dimensional and 

can capture local dependencies between the features, used in combination 

with the pooling layer for computation efficiency. LSTM networks within the 

RNN framework, provide a means to learn temporal dependencies in clinical 

data modeling changes over time of patient health which are key for 

effectively predicting CKD. MLPs examine structured clinical data, learning 

intricate associations (e.g., blood pressure to serum creatinine). A unified 

framework is proposed in which the outputs of our CNN, RNN, and MLP 

models are incorporated using a soft voting scheme to get the final prediction 

as a weighted average. Integrating these ensemble methods will combine the 

advantages of each model and improve the accuracy, and reliability in 

detecting and predicting CKD. Figure 1 illustrates the design overview, 
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indicating the movement of information and decision-making of the Proposed 

Model. 

 

 

3.2 CKD Dataset  

This study employs the Kaggle dataset as the data framework, a well-known 

online platform known for its robust datasets of various types. The Chronic 

Kidney Disease (CKD) data is a dataset containing relevant clinical and 

demographic information about the diagnosis and management of CKD. Such 

as blood pressure, serum creatinine, blood urea, hemoglobin levels, and 

indicators for diabetes and hypertension till the instant. The selection of 

features for development relies on their clinical importance to kidney function 

and association with CKD risk stratification. Detailed information of dataset 

Figure 1 Proposed Architecture 
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parameters: Table 1 provides a detailed description of data set parameters 

such as numerical features like age, blood pressure (bp), serum creatinine (sc), 

and categorical variables including the presence of illness conditions diabetes 

mellitus(dm) and coronary artery disease(cad). 

Table 1 Dataset Parameters 

Para-
meter Description 

Para- 
meter Description 

id 
A unique identifier is assigned to 
each patient record sod 

Serum Sodium; abnormal levels 
can be influenced by kidney 
function 

age 
The patient's age, which plays a 
critical role in understanding the 
prevalence and progression of CKD 

pot 
Serum Potassium; levels may be 
affected by kidney function 

bp 
Systolic blood pressure, a key 
clinical measurement correlated 
with kidney disease risk 

hemo 
Hemoglobin levels; anemia is a 
common issue in CKD patients 

sg 
Specific Gravity of urine, indicating 
concentration; abnormal values 
may suggest kidney dysfunction 

pcv 
Packed Cell Volume; low levels 
may indicate anemia associated 
with kidney disease 

al 

Albumin levels in urine; elevated 
values can indicate kidney damage 

wc 

White Blood Cell count; high 
counts may suggest inflammation 
or infection impacting kidney 
function 

su 

Presence of sugar in urine; 
elevated levels may signal diabetes 
or metabolic disorders, common 
causes of kidney disease 

rc 

Red Blood Cell count; provides 
additional insight into blood health 
and kidney function 

rbc 
Red Blood Cells in urine; abnormal 
levels can indicate kidney damage 
or other conditions 

htn 
Hypertension, a common risk 
factor for kidney disease, recorded 
as a binary indicator (yes/no) 

pc 
Pus Cells in urine; presence may 
suggest inflammation or infection 
impacting kidney function 

dm 
Diabetes Mellitus, another risk 
factor, noted as a binary indicator 
(yes/no) 

pcc 

Pus Cell Clumps in urine; may 
indicate severe infection or 
inflammation 

cad 

Coronary Artery Disease, a 
condition linked to increased risk 
of CKD, is represented as a binary 
indicator (yes/no) 

ba Bacteria in urine; presence could appet Appetite level, which can be 
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imply a urinary tract infection 
affecting kidney function 

affected by kidney disease, is 
categorized as good or poor 

bgr 
Blood Glucose Random; high levels 
may point to diabetes, a significant 
risk factor for kidney disease 

pe 
Presence of Pedal Edema; fluid 
retention and its presence can be a 
symptom of CKD 

bu 
Blood Urea; elevated levels may 
signify impaired kidney function ane 

Anemia, a common complication 
in CKD, is recorded as a binary 
indicator (yes/no) 

sc 

Serum Creatinine; high levels are 
commonly associated with reduced 
kidney function Classif

ication 

The target variable indicating the 
presence or absence of CKD, 
categorized as 'ckd' for patients 
with CKD and 'notckd' for those 
without 

 

This dataset is a comprehensive set of features for CKD modeling, including 

both clinical measurement and patient demographics. This wide range of 

parameters ensures a comprehensive study on the determinants promoting 

CKD and can further signpost predictive model development. 

 

3.3 Data Preprocessing (Label Encoder) 

Data preprocessing is an important step of preparing the CKD dataset, for 

utilizing it in machine learning models perfectly. The data should be cleaned 

to remove missing and inconsistent values and transformed so that now we 

can move on to training with a clean set of formatted inputs (correctly 

prepared using pre-processing techniques). Handling missing values in this 

work, described that we do either mean or mode for imputing missing 

numerical and categorical data types respectively (as well as dropping too few 

records with many missing). The goal of this process is to maintain the shape 

and length of our base dataset. Features such as age, blood pressure level, 

and other numerical features are in different ranges; hence normalization is 

done to scale the value between 0 and 1 of a feature set. It is necessary as it 
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prevents variables with large scales from overshadowing those with smaller 

scales which allows the model to converge faster and overall perform better. 

Also, categorical variables such as hypertension (htn), diabetes mellitus (dm), 

and target classification (CKD or non-CKD) are Labeled and encoded. This 

encoding converts the categories into ordinal values, and it will allow us to 

know of each category as a label to use by our model since models only 

process numeric data. For example, binary features like htn and dm are coded 

1 and 0. The resulting dataset after proper handling of missing data, 

normalization of numerical features, and encoding of the categorical variables 

has increased accuracy (since DL models are now starving for perfect clean 

input data), reduced training times as well trained model should be trainable 

with few epochs contributing to better generalization performance in unseen 

production datasets. The preprocessing is necessary to create the models that 

will be able to detect and predict CKD from a clinical dataset accurately. 

3.4 Splitting of Dataset into Training and Testing 

Evaluating the performance of our deep learning models is hugely important, 

and for that reason, we need to split out data into a testing subset. This is a 

very important step that ensures we train the models on one part of the data 

and test it in other different portions to be able to measure how well they 

generalize to unseen examples. In this research, the data splitting is 

completed with 80% for training and remaining as a testing dataset. In the 

training stage, we use it for training CNNs, RNNs, and MLP models where they 

learn from different patterns of clinical features in CKD. The testing set, in 

contrast, is expected to provide an unbiased estimate of the effectiveness or 

predictive power a model will have on new data. 

It is important to make this split as otherwise we may fall into the trap 

of overfitting, i.e. our model performs really well on training data but not 
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generalizing to a new data set. Data is put aside for testing (that the models 

have never seen) so that we can confirm are not simply memorizing how to 

get the correct answer from our training data, but actually learning general 

patterns that they should use when looking at future observational cases. In 

addition, to ensure the constant and non-discrimination evaluation all models 

are trained using a consistent data split used for testing where each model will 

be evaluated under the same setup. This is a key method to partition the data 

in order to provide an unbiased estimate of predictive performance that will 

generalize across CKD detection tool development for real-world clinical 

applications. 

3.5 Model Training Using CNN, RNN, and MLP 

In this research work, three different deep learning models as shown in Figure 

2 such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), and Multi-Layer Perceptrons are used for prediction of CKD from 

clinical datasets. Every model separately learns from the patterns and features 

that allow for early CKD prediction in the training set. 

Figure 2 Neural Network Models 
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 Convolutional Neural Networks (CNNs): This work adopts Convolutional 

Neural Networks (CNNs), usually used in the context of image data, for 

structured tabular data analysis. CNNs are particularly suited to identify 

complex and non-linear relationships within arrays of clinical parameters due 

to their capability for modeling local dependencies between features. The 

architecture consists of 1D convolutional layers, accompanied by pooling 

layers to reduce dimensionality while focusing on the most crucial information. 

The above CNN model is trained for Adam optimizer and binary cross-entropy 

loss, multiple epochs run to converge. 

 Recurrent Neural Networks (RNNs): More particularly, RNNs are augmented 

with Long Short-Term Memory (LSTM) to identify temporal dependencies and 

trends in the clinical data. Because CKD progression typically evolves with a 

change in the health status of patients, an LSTM model is particularly 

advantageous for assessing such sequential data. LSTMs are a type of layer 

that helps in keeping the information for a long time meaning they will be 

useful to find out how features evolve about patients. The RNN model is 

trained with the same Adam optimizer and binary cross-entropy loss function 

but optimizes to learn sequential patterns that drive CKD progression. 

 Multi-Layer Perceptrons (MLPs): Fully connected layers (a type of feed-

forward neural layer) using Multi-Layer Perceptron (MLP) are used for 

structured data analysis which includes demographic and clinical features. We 

want to model a complex relationship between the features, and MLPs are 

excellent in classifying similar patterns. It is a neural network model with some 

hidden layers using a non-linearity activation function (ReLU), and a dropout 

layer to prevent overfitting. The MLP model is trained with the same Adam 
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optimizer, binary cross-entropy loss and it uses fine-tuning to improve 

prediction accuracy over multiple epochs. 

Since hyperparameters such as learning rate, batch size, and number of 

epochs need to be tweaked during the experiments for all models, this 

introduces the training, we feed our models with & train on this training set 

wherein they are nudged more towards minimizing errors as per feedback 

from the loss function which results out of comparison; made during model 

prediction and targets. Validation is done over the training itself so that it can 

keep track of how the model captures performance for unseen data i.e. 

validation set which in turn avoids overfitting and generalization multi-folds. 

We want to ensure that each model learns well from historical data and can 

generate an accurate prediction of CKD when presented with novel patient-

level data. 

3.6 Performance Outcome 

Several important measures such as accuracy, precision, recall & F1-score are 

utilized to assess the performance of CNNs (Convolutional-Neural-Network), 

RNNs (Recurrent Neural Networks), and MLP. In this respect, these metrics 

give insight into the performance of each model to predict chronic kidney 

disease (CKD) based on clinical datasets. Both for the scikit-learn models, their 

predictions are run through a subsample of test data compared with the truth 

labels in three metrics. 

Accuracy refers to the number of true instances which are correctly 

classified among total instances. It is given by the formula: 

Accuracy = ்ା்ே

்ା்ேାிାி
 

Where TP is a true positive number, TN is a true negative number, FP is 

a false positive number, and FN = False negative. The higher the accuracy is, 

the model can categorize most instances correctly. Among these models, CNN 
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has achieved the best accuracy rate in this study with its high feature 

extraction capability. 

Precision is the number of correct CKD cases divided by all predicted 

positive cases, which allows determination not only if a case was identified 

properly, but also that no actual non-CKD events were falsely classified as CKD. 

Precision is defined as: 

Precision =  ்

்ାி
 

Classically, in medical diagnostics where false positives may cause the 

administration of unnecessary treatments, one needs a high precision score. 

The CNN and MLP models have outstanding precision scores, meaning they 

are consistent in recognizing CKD instances with minimal false positive rates. 

Recall (also known as sensitivity), measures the proportion of actual 

CKD cases correctly predicted by the model. The formula for calculating it is as 

follows; 

Recall = ்

்ାிே
 

In medical contexts, it is very important that we never miss a positive 

case (false-negative recall). Specifically, the RNN model has a superior recall 

score, capturing long-term trends in patient data that are important for the 

recognition of CKD over time. 

F1-score is the Harmonic mean of Precision and Recall, which means 

that it gives value to both measures equally. It is given by the formula: 

F1 = 2 ×  
௦  × ோ

௦ ା ோ
 

This F1-score value is ideal, especially when the class distribution of the 

data is uneven or both precision and recall are equally important. In this 

research, the F1-score of detecting CKD is higher when employing the CNN 

model followed by a relatively well over other measures that consider both 

makes and misses. 
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3.7 Choosing the Best Model for Prediction and Model Testing 

From the performance metrics, it can be clearly seen that the Model has high 

Accuracy and is equally superior in other evaluation metrics like Precision and 

recall as well F1 score will be chosen for the Optimal model predicting chronic 

kidney disease. The sensitivity and specificity are most balanced in this model 

that was selected, thus indicating the optimal method with true value for real-

world clinical usage. The best model is then further refined and validated 

(using more hyperparameter tuning, and testing on the training set) so that it 

has good calibration performance in practice. This is a very important step to 

ensure the robustness of your model and makes it resistant (or at least slightly) 

less vulnerable to changes in data that you do not have when will instantiate 

the service around. 

Upon completion of these optimizations, the model undergoes a 

thorough testing process with an entirely separate blind dataset to assess 

external validity and performance in predicting CKD outside of initial training 

and validation datasets. In this step, it is vitally important to evaluate the 

generalized performance of your model when applied to new unseen data of 

your network will be often used in practice on patient populations unrelated 

to those seen before. The testing phase validates whether the model can 

achieve a good level of predictiveness while reducing false positives and 

negatives. These results are the ultimate validation that the model is ready to 

go out in the clinic, where it has been tested for accuracy and reliability at 

scale. It is important for the generalization and effectiveness of a model to 

perform well on different patient groups, especially when accurate prediction 

related to CKD can impact greatly health care applications with improved 

handling and treatment management and outcome. 
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4. RESULT AND DISCUSSION 

Results of our proposed CKD prediction study all experiments were executed 

on Google Colab, a free and powerful environment for training and evaluating 

models. We used the resources provided by Colab to develop and test Deep 

learning models CNNs, RNNs, and MLP. We show the performance and how 

other models may compare in predicting chronic kidney disease on these 

results. 

4.1 Loading the Necessary Libraries  

In the first step of conducting the analysis and developing the model, we 

import the necessary libraries. The data is processed using pandas and numpy, 

and visualization of the data is done using matplotlib.pyplot, and seaborn. The 

functions train_test_split, StandardScaler, and LabelEncoder from sklearn were 

used to split the dataset, scale the features, and transform categorical 

variables into numbers respectively. We evaluate classification model 

performance from classification_report and confusion_matrix, and save the 

relevant models using joblib. For deep learning, we build and train the CNN, 

LSTM, and MLP models using tensorflow.keras’ Sequential, Dense, Conv1D, 

MaxPooling1D, Flatten, LSTM, Dropout tools. The to_categorical function used 

in this report is that of converting class labels to a form that is appropriate for 

classification. 

4.2 Loading the CKD Dataset 

To perform further operations, we first have to load the dataset and in this 

case, it will require specifying the file path. The data has been saved with the 

name ‘data.csv’ within the content directory and can be uploaded with the 

application of the pd.read_csv function which loads a data file into a 

DataFrame format. This step sets up the dataset for basic cleaning and later 

analysis. 
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4.3 Visualization of the CKD Dataset 

The next step in the analysis is where we seek to explore the data and 

demonstrate its count using various classes. In this case, Seaborn’s 

counterplot was used to depict the numbers of CKD and non-CKD cases. The 

instances of how many ‘classification’ columns are contained regarding each 

of the classes have been reported. This graph that illustrates ‘Count of CKD 

and Non-CKD’ can be seen and displayed with the command plt.show(). This 

enabling graph helps in understanding how the classes are distributed in the 

dataset as shown in Figure 3. 

 

Figure 3 Count of CKD and Non-CKD 

To make sense of the age-related data in the dataset, Seaborn’s histplot with 

kde=True has been employed which adds a smooth Kernel Density Estimate 

(KDE) curve to the histogram. This presents a clearer picture of the age 

specifically of the patients as well as indicating the probability density. The 

plot is entitled 'Age Distribution', and it is also shown using plt.show(), which 

in this case is meaningful for ascertaining the particular age range and the 

extent to which the ages in the dataset are dispersed as visibly presented in 

Figure 4. 
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This snippet contains a few additional libraries that are required and utilizes a 

LabelEncoder for the conversion of categorical columns of the data set to 

numeric values. Thereafter, it goes on to output the modified data set and 

estimate the correlation matrix to gain insight into how features relate to each 

other. The correlation matrix is represented in the form of a heat map which 

shows the strength and direction of feature relationships in Figure 5. 

 

 

 

 

Figure 5 Correlation Matrix 

Figure 4 Age Distribution 
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4.4 Dataset Preparation and Preprocessing for Model Training 

We conduct a preparation of the dataset so that it can be used to train or test 

the model. To begin with, the dataset is broken down into the features 

variables (X) and target variable (Y). Any missing values are found and filled; 

numerical columns are imputed with the mean while categorical columns are 

filled with the mode. Then, categorical variables are encoded numerically. The 

StandardScaler is then applied for feature scaling, and the target variable is 

also encoded. In the end, the dataset is divided into testing and training 

datasets in a ratio of 80% to 20 % to test the model. 

4.5 Model Training for CKD Prediction  

The data undergoes transformations that allow the use of Convolutional 

Neural Networks (CNN) and Recurrent Neural Networks (RNN). For CNN 

training testing datasets additional axis is added because of the 1D 

convolutional layers. Then the CNN model architecture is defined by stacking 

sequentially convolutional, max pooling, flattening, and dense layers. The 

model is compiled with the Adam optimizer and binary cross entropy as the 

loss function and trained for 5 epochs with 20% held out for validation 

purposes. By the same token for the RNN model, the data is transformed in a 

way appropriate for interfacing with LSTM layers. The RNN model contains 

one LSTM layer and two dense layers. It is also compiled with Adam optimizer 

and a binary cross-entropy loss, trained over 5 epochs with 20% held out for 

validation. For the Multi-Layer Perceptron (MLP) model the data does not 

undergo further reformatting which means the dataset is in the initial form. 

The MLP model is made of only dense layers that utilize dropout in their 

architecture for regularization. The model is compiled with the Adam 

optimizer, the binary cross entropy loss function, and trained over 5 epochs 

with the validation being 20%. 
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4.6 Model Evaluation and Classification Reports 

For the three models CNN, RNN and MLP, the corresponding results are 

obtained by testing them with the test dataset. Each model makes predictions 

with values greater than 0.5 being considered as positive class. Performance 

measures are calculated such as accuracy, precision, recall, and F1-score that 

are precisely elaborated in classification reports.  

Results derived from predictions of the CNN model can be obtained from the 

classification report which shows performance in a number of aspects. The 

same procedure is done for RNN and MLP models. The classification report 

from Tables 2, 3, and 4 respectively shows how well the models performed in 

CKD prediction and how each compares to the other. 

Table 2 Classification Report of CNN 

Class Precision Recall F1-Score Support 

0 (Non-CDK) 0.98 1.00 0.99 52 

1 (CKD) 1.00 0.96 0.98 28 

Accuracy   0.99 80 

Macro Avg 0.99 0.98 0.99 80 

Weighted Avg 0.99 0.99 0.99 80 

 

Table 3 Classification Report of RNN 

Class Precision Recall F1-Score Support 

0 (Non-CDK) 0.91 0.77 0.83 52 

1 (CKD) 0.67 0.86 0.75 28 

Accuracy   0.80 80 

Macro Avg 0.79 0.81 0.79 80 

Weighted Avg 0.82 0.80 0.80 80 
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Table 4 Classification Report of MLP 

Class Precision Recall F1-Score Support 

0 (Non-CDK) 0.98 1.00 1.00 52 

1 (CKD) 1.00 0.99 0.96 28 

Accuracy   0.99 80 

Macro Avg 1.00 1.00 1.00 80 

Weighted Avg 1.00 1.00 1.00 80 

 

4.7 Accuracies Comparison of Models 

We are evaluating the measures of performance of three deep learning 

models, CNN, RNN, and MLP in this analysis. Consequently, the three deep 

learning models were evaluated using the test dataset, and the accuracy for 

each model was obtained in the end using the evaluation method. For this 

evaluation, reshaped test data is employed for both CNN and RNN models, 

whereas original test data is employed for the MLP model. Accuracy values for 

each model are then placed in a dictionary where CNN, RNN, and MLP are the 

keys representing model names. The values are their respective accuracies and 

this dictionary is used to create a bar chart using the functions of matplotlib. A 

function that depicts the accuracy of a model is emulated, and the y-axis 

denotes the accuracy values while the x-axis shows the model names. The bar 

chart gives a comparative presentation between the three models as shown in 

Figure 6 and infer in the next comparisons, which one gives the highest value 

for CKD prediction. 
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Figure 6 Accuracy Comparison of Models 

5. Conclusion 

In this study, chronic kidney disease (CKD) was predicted by employing several 

deep learning algorithms namely CNN, RNN, and MLP which were trained on 

clinical data. We showed that, through data preprocessing, model training, 

and performance evaluation, such models have various advantages. The CNN 

model retained the hierarchical features best, the RNN model effectively 

expanded on the temporal relationships, while the MLP showed high 

resistance to the complexities of dealing with structured data. In the end, we 

put these models into practice through Flask. The results suggest that the 

combination of the models can lead to a better understanding of the 

prediction of CKD providing valuable models for better patient care practices. 

The differences in the performance of the deep learning models were also 

registered during the study. For CKD recognition patterns the highest 

accuracy and predictive ability were observed with CNN models, while for 

sequential dependencies, RNN models were more efficient than other 

architectures, MLP model was effective in structured clinical data. 

Normalization and encoding of categorical variables or missing values were 
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some of the preprocessing techniques that were critical for enhancing the 

model performance and generalizing them to new data. Furthermore, the 

inclusion of Flask for model deployment offered an efficient way of testing the 

model in real-time and this corroborated the model's capabilities within a 

clinical context. 

The study emphasized that utilizing various deep learning models in an 

integrated manner can yield better CKD prediction performance, with 

potential application in routine clinical practice for improving early diagnosis 

and management of patients. For future work, we intend to extend this 

research by expanding the training and testing datasets. Using an expanded 

and more representative dataset will allow us to eliminate a lot of patient 

conditions and variability from our models which may potentially increase 

their predictive accuracy. Moreover, we will also apply additional strategies, 

like ensemble learning and transfer learning to boost the CKD prediction 

model performance even more. The ultimate goal of these efforts is to 

enhance the accuracy of the forecasts and assist in detecting chronic kidney 

disease more efficiently and earlier. 
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